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Abstract A new algorithm for the iterative solution of

the normalized elimination of the small component

(NESC) method is presented that is less costly than pre-

vious algorithms and that is based on (1) solving the NESC

equations for the uncontracted rather than contracted basis

(‘‘First-Diagonalize-then-Contract’’), (2) a new iterative

procedure for obtaining the NESC Hamiltonian (‘‘iterative

TU algorithm’’), (3) the renormalization scheme connected

to the picture change, and (4) a finite nucleus model with a

Gaussian charge distribution. The accuracy of NESC

energies, which match those of 4-component Dirac calcu-

lations, is demonstrated. Test calculations with CCSD(T),

DFT, and large basis sets including high angular momen-

tum basis functions (f,g,h,i) are presented to prove the

general applicability of the new NESC algorithm. Com-

parison with other algorithms of solving the NESC equa-

tions are shortly discussed and time savings are presented.

Keywords Normalized Elimination of the Small

Component (NESC) � Exact quasi-relativistic methods �
Picture change � Finite nucleus model

1 Introduction

One of the primary objectives of current relativistic quan-

tum chemistry is to transform the four-component (4c)

Dirac equation [1, 2] into an exact, but nevertheless fea-

sible and generally applicable two-component (2c) quasi-

relativistic description of atoms and molecules. The

purpose of such a transformation is to eliminate the (neg-

ative-energy) positron states because a description of pos-

itrons is chemically not interesting and leads only to

computational difficulties and increased cost by treating a

double set of (electronic and positronic) eigenstates. For

the investigation of the majority of all chemical problems

not involving a magnetic field, one needs only the (posi-

tive-energy) electronic states, which are dominated by the

large component of the Dirac wavefunction [3–5]. For a

free electron, this can be exactly done applying the Foldy-

Wouthuysen (FW) transformation [6]. For bound electrons

in atoms or molecules, the FW transformation is not

available in closed algebraic form and therefore has to be

approximated or replaced by other techniques where in the

1980s and 1990s perturbation was preferentially used. Best

known is the Douglas–Kroll–Hess (DKH) method that has

been worked out for low orders of n [7, 8–11] as well as

higher orders [12, 13]. In the last years, infinite-order

DKHn theory has been developed, which reproduces exact

4c-Dirac energies [14–18]. It has to be mentioned that

DKHn theory suffers from its slow convergence and dif-

ficulties when formulating higher orders of the DKHn

perturbation approach. Infinite-order theory offers in this

regard an important improvement of DKH.

Much faster convergence is provided by the perturbation

approach based on the regular approximation (RA) to the

relativistic Hamiltonian [19]. However, the RA suffers from

several technical problems and originally only ZORA
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(zeroth-order regular approximation) [20] and IORA (infi-

nite-order regular approximation; IORA is still a zeroth-

order approach, however the relativistic normalization of the

wave function is carried out at infinite order) [21] were

developed where especially the Baerends group played an

important role [22, 23]. Some of the obstacles of the RA were

overcome by Filatov and Cremer by developing matrix

representations of the ZORA and IORA Hamiltonians [24–

27], deriving their relationship to an exact quasi-relativistic

Hamiltonian [28] and solving the gauge-dependence prob-

lem of ZORA and IORA [29]. Although only low-order RA

was implemented, the RA methods had an important impact

on the improvement of the normalized elimination of the

small component (NESC) method [28, 30].

A variational approach to the problem of obtaining an

exact quasi-relativistic 2c-solution was formulated by Dyall

in the form of the NESC method [31, 32]. NESC is a first

principles 2c-approach in which the small component of the

electronic wavefunction is eliminated using the restricted

kinetic balance (RKB) prescription [33, 34]. In view of the

fact that NESC provides the exact 2c relativistic description

of one-electron systems, it can be used as an appropriate

reference for approximate quasi-relativistic theories such as

the RA or finite-order DKH methods. For some time, these

possibilities could not be exploited because of the compu-

tational difficulties accompanying the solution of the NESC

equations. A number of approximate NESC methods were

suggested ranging from the atom-centered approximation of

NESC developed by Dyall and Enevoldsen [35] to the low-

order NESC approximations of Filatov and Cremer [36, 37].

A breakthrough was the work by Filatov and Dyall who

presented for the first time a computationally feasible way of

solving the NESC equations [38].

There have been a number of other approximate quasi-

relativistic methods [39, 40] where we mention here just the

infinite-order two-component (IOTC) relativistic Hamilto-

nian approach connecting to the original work of Barysz,

Sadlej, and Snijders [41], which triggered a number of

developments based on this approach [42–47]. Common to

most of these developments is the fact that approximate 2c-

Hamiltonians are derived at the operator level whereas the

matrix representation of the final operator is obtained at a

later stage. However, this procedure can be substantially

simplified by starting with the matrix representation of the

Dirac Hamiltonian in a finite basis set and then using matrix

algebra to obtain a simplified relativistic Hamiltonian.

Dyall was the first who successfully applied such a

matrix-driven approach when deriving NESC [31]. Iliaš et al.

[48] also used matrix algebra to derive the IOTC Hamilto-

nian, which has led to substantial improvements of IOTC by

Iliaš and Saue [49] and Barysz et al. [47], showing that IOTC

can also provide exact quasi-relativistic values. Kutzelnigg

and Liu have classified quasi-relativistic methods as being

operator based or matrix based and pointed out in this con-

nection that the latter lead much easier to an exact quasi-

relativistic presentation of 4c-Dirac theory [50–52]. These

authors describe the basic requirements for exact quasi-rel-

ativistic 2c (X2C or XQC) methods [53]. They identify

NESC as X2C method, criticize however [54] the unnor-

malized version of NESC (UESC) also discussed in Dyall’s

original NESC paper [31]. This is in so far relevant as ZORA

can be considered as a UESC-ZORA method and IORA as a

NESC-ZORA method, as was pointed out by Filatov and

Cremer [30]. Filatov [55] has emphasized that Dyall’s NESC

method [31] fulfills the criteria of exact X2C methods and

therefore its practical realization [38] made X2C calcula-

tions generally available.

Previously, we have pointed out the relationship

between IORA and NESC [30], which makes IORA a

convenient starting point for an iterative solution of the

NESC equations [38]. In this work, we present further

improvements of NESC where we focus on both the

accuracy of solving the NESC equations and the compu-

tational cost of NESC. In this connection, we will introduce

a different strategy of setting up the NESC equations. In

addition, we will combine NESC with a finite nuclear

model and document the energy changes caused by this.

Finally, we will demonstrate the effect of employing basis

sets with high angular momentum functions in the case of

NESC calculations. Test calculations will be carried out for

mercury and thallium molecules.

This work is part of a larger research effort that involves

the improvement of existing NESC algorithms and programs

(the current paper), the derivation of analytical first-order

energy derivatives to carry out NESC geometry optimiza-

tions [56], and the development of analytical second-order

NESC derivatives (in progress) for calculating vibrational

frequencies especially in connection with the URVA (unified

reaction valley approach) analysis of the mechanism of

chemical reactions as described by the reaction path curva-

ture and the curvature coupling coefficients [37, 58]. These

studies involve the repeated calculation of energy and its first

and second derivatives along the reaction path at the NESC/

DFT, NESC/MP2, etc. level of theory and thereby require an

efficient solution of the NESC equation. Apart from this, the

current work is the basis for calculating relativistic correc-

tions in connection with the determination of first- and sec-

ond-order response properties. In view of these objectives,

we want to present NESC in this work as a feasible, generally

applicable, and accurate quasi-relativistic method.

This article is organized as follows: In Sect. 2, the theo-

retical basis for the improvement of NESC is presented.

Section 3 gives details of the calculations presented in Sect.

4. These calculations will show that NESC can compete with

regard to its cost requirements with approximate quasi-rel-

ativistic methods.
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2 Theory

Starting from the 4-component matrix Dirac equation [1, 2]

with embedded restricted kinetic balance (RKB)

P
V T

T W� T

� �
Ap A

Bp B

� �

¼
S 0

0 ð2mc2Þ�1
T

� �
Ap A

Bp B

� �
Ep 0

0 E

� �
: ð1Þ

Dyall decoupled the positronic states with energies Ep and

eigenvectors Ap and Bp, respectively, and eliminated the

small component with the help of the pseudo-large

component represented by eigenvector matrix B. Matrix

B is related to the large component A via the matrix U as

shown in Eq. 2 [31].

B ¼ UA ð2Þ

This led to a simple eigenvalue equation (the NESC

equation)

~LA ¼ ~SAe ð3Þ

for obtaining the large component A of the electronic

relativistic wavefunction. The latter is normalized on the

relativistic metric ~S

~S ¼ Sþ 1

2mc2
UyTU ð4Þ

as Ay~SA ¼ I, which corresponds to the exact normalization

of the large component of the relativistic 4-component

wave function.

In Eqs. 1 and 4, S, T, and V are the matrices of the non-

relativistic overlap, kinetic energy, and potential energy

operators, whereas W is the matrix of the operator

ð1=4m2c2Þr � pVðrÞr � p (ð1=4m2c2ÞrVðrÞ � r in scalar

relativistic approximation) in the basis of the atomic

orbitals vl(r) [31]. Note that, with the use of bare nuclear

potential V(r), W is a negative definite matrix. The scalar

relativistic approximation is used throughout this article

with the velocity of light c = 137.035999679 [59].

The NESC Hamiltonian ~L is obtained iteratively by

solving the following system of equations [31, 38]

~L ¼ TUþ UyT� UyðT�WÞUþ V ð5Þ

U ¼ T�1ðS~S
�1 ~L� VÞ: ð6Þ

It is convenient to start the iterative solution of Eqs. 5 and

6 from the solutions of the matrix IORA equation (7) [35],

~LIORAAIORA ¼ ~SIORAAIORAeIORA ð7Þ

where the Hamiltonian ~LIORA and the metric ~SIORA are

obtained using Eq. 8 in Eqs. 4 and 5 [30].

UIORA ¼ ðT�WÞ�1T ð8Þ

Because W is a negative definite matrix, Eq. 8 will not

diverge.

As was observed in Ref. 38, the aforementioned iterative

solution of Eqs. 5 and 6 may become unstable with the use

of local atom-centered basis sets which include very tight

functions (e.g. Gaussian-type functions with very large

exponents). The origin of the instability can be traced back

to the occurrence of large positive eigenvalues of the

NESC Hamiltonian (5), ek [ [ 2mc2 [38]. For the pur-

pose of demonstrating this, we transform Eq. 6 as in Eq. 9,

U ¼ T�1 ðIþ 1

2mc2
UyTUS�1Þ�1 ~L� V

� �
ð9Þ

through Eq. 4 and the formula

S~S�1 ¼ ð ~SS�1Þ�1 ¼ ðIþ 1

2mc2
UyTUS�1Þ�1 ð10Þ

where I is a unit matrix. Using the identity (I ? A)-1 = I -

A (I ? A)-1 = I - (I ? A)-1 A [60] and replacing ~L by

Eqs. 5 and 9 can be transformed to Eq. 11,

U ¼ T�1

 
TUþ UyT� UyðT�WÞU:

� 1

2mc2
UyTUS�1 Iþ 1

2mc2
UyTUS�1

� ��1

~L

!
ð11Þ

from which one can obtain Eq. 12:

U ¼ UIORA � 1

2mc2
UIORAU~S�1 ~L: ð12Þ

Iterating Eq. 12 and using eigenvalues and eigenvectors of

NESC Eq. 3 one can derive

U ¼ UIORA þ UIORAUA � e

2mc2

� �
Ay~S

¼ UIORA þ UIORA UIORA þ UIORAUA � e

2mc2

� �
Ay~S

� �
A

� � e

2mc2

� �
Ay~S

¼ UIORA þ UIORA
� �2

A � e

2mc2

� �
Ay~S

þ UIORA
� �2

UA � e

2mc2

� �2

Ay~S

¼
X2

k¼0

UIORA
� �kþ1

A � e

2mc2

� �k

Ay~S

þ UIORA
� �3

UA � e

2mc2

� �3

Ay~S

¼
X1
k¼0

UIORA
� �kþ1

A � e

2mc2

� �k

Ay~S ð13Þ

from which it is obvious that the convergence of the

derived expansion is stable and monotonic for negative
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eigenvalues �2mc2\ek\0. However, occurrence of the

positive eigenvalues ek leads to oscillating convergence

and, for eigenvalues ek [ 2mc2; the expansion (12) may

become divergent.

In this work, we will investigate and compare four dif-

ferent procedures of solving the NESC equations. These

include iterative procedures suggested in the literature or

developed in this work as well as the one-step method

originally suggested by Dyall [31] but only recently real-

ized in the IOTC [44], X2C [52], and the IOTC/X2C

methods [49]. Primary objective of this comparison is a

way of rapidly determining the matrix U in those cases

where repeated calculation of the NESC energy, NESC

gradient, and NESC Hessian is required as for example in a

reaction path following algorithm of URVA (see above)

[57]. A priori one could assume that the latter algorithm

should be preferred; however, we will show in the fol-

lowing that iterative algorithms as used by Filatov and

Dyall [38] (the so-called damping method), the Newton-

Raphson method investigated by Liu and Kutzelnigg [52]

or a new procedure, which we have coined the iterative TU

method, still have their merits.

Damping method. Filatov and Dyall [38] suggested to

improve the convergence of the iterative solution of the

NESC equations by modifying Eq. 6 as in Eq. 14

U ¼ T�1ðSAdAy~L� VÞ ð14Þ

and introducing a diagonal matrix d of damping

coefficients, see Eq. 15,

dk ¼
1; ek � 0

ð1þ ek=2mc2Þ; ek [ 0

�
ð15Þ

which damps contributions of those eigenvectors corre-

sponding to the very large positive eigenvalues ek of the

NESC Hamiltonian (2). Although the approach described

guarantees quick and stable convergence for the negative

eigenvalues ek, the positive eigenvalues may remain un-

converged. Consequently in some cases it occurs that both

the NESC eigenvalues and the total energy become

dependent on the damping coefficients. For example, we

observed that for Hg(1S) described with standard basis sets

(Sect. 3), deviations in the total energy are as large as 0.1

Hartree per iteration step. It is therefore desirable to obtain

accurate solutions of Eqs. 3–6 without imposing restric-

tions on the eigenvalue spectrum.

Newton-Raphson method Liu and Kutzelnigg [52] sug-

gested a Newton-Raphson procedure to solve the quasi-

relativistic equation. For the NESC method, this implies

the following steps. If Eq. 12 is written for the eigenvector

al of A of Eq. 3, one obtains

Ual ¼ ðUIORAÞ�1 þ el

2mc2

� ��1

al ¼ bl: ð16Þ

All eigenvectors of iteration step n can be collected in A(n)

to obtain U of step n ? 1:

Uðnþ1Þ ¼ BðnÞAðnÞ
y~SðnÞ ð17Þ

with the help of the matrix identity

~S ¼ AAy
� ��1

: ð18Þ

An iterative scheme as such does not guarantee convergence

of U and therefore a Newton-Raphson approach is applied.

With the help of Eq. 19 (which follows from Eq. 12 using the

identity S�1ðTUþ VÞ ¼ ~S�1 ~L [55])

U ¼ UIORA I� 1

2mc2
US�1 TUþ Vð Þ

	 

: ð19Þ

An error matrix G = G(U) is defined

GðUÞ ¼ I� 1

2mc2
US�1 TUþ Vð Þ � ðUIORAÞ�1U � 0:

ð20Þ

Replacing U by Uþ D and neglecting the quadratic term of

D; one obtains

GðUþ DÞ ¼ GðUÞ � 1

2mc2
DS�1 TUþ Vð Þ þ US�1TD
� �

� ðUIORAÞ�1D
� 0:

ð21Þ

Inserting Eq. 6 into Eq. 21 leads to

GðUÞ ¼ 1

2mc2
D~S
�1 ~Lþ US�1TD

� �
þ ðUIORAÞ�1D: ð22Þ

If one applies Eq. 22 to eigenvector al of Eq. 3 and the

matrix identity of Eq. 18 again, Eqs. 23 and 24 result:

Dal ¼ ðUIORAÞ�1 þ 1

2mc2
US�1Tþ el

2mc2
I

� ��1

GðUÞal

¼ ql

ð23Þ

Dðnþ1Þ ¼ QðnÞAðnÞ
y~SðnÞ: ð24Þ

Hence, the final U matrix in the (n ? 1)-th iteration is

given by

U
ðnþ1Þ
final ¼ Uðnþ1Þ þ Dðnþ1Þ ð25Þ

which then is used to update ~S and ~L by Eqs. 4 and 5.

This approach, called by Liu and Kutzelnigg the refined

linear iteration method (Eqs. 16–18), combined with a

Newton-Raphson approach (Eqs. 19–25) [52]) leads to

reliable eigenvalues, however implies also a substantial

computational overhead because in each iteration there are

about 2 9 M (M number of basis functions) matrix
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inversions and multiplications to be performed in Eqs. 16

and 23. Liu and Kutzelnigg also suggested some simple

linear iteration methods that are computationally much

cheaper (reduction of computational cost by about one

half), however found that these approaches diverge for

large atomic numbers Z when using large basis sets [52].

We found that this problem can be cured. It is advisable to

calculate matrix U on the r.h.s of Eq. 12 according to

Uðnþ1Þ ¼ 2mc2 I� ðUIORAÞ�1
UðnÞ

� �
~LðnÞ
� ��1

~SðnÞ: ð26Þ

If UIORA is used as the initial U, Eq. 26 leads to a zero

matrix in the first iteration. In this case, the D matrix from

Eq. 24 is identical to the U matrix of Eq. 17. Therefore, the

zero matrix in the first iteration does not affect the

convergence.

An iterative scheme based on Eq. 26 performs similar to

an approach based on Eq. 17, however it reduces compu-

tational costs substantially. When using basis functions

with very large exponents, Eq. 26 leads to equally fast or

even faster convergence than Eq. 17. Therefore, we have

carried out all Newton-Raphson calculations utilizing Eq.

26.

One-step method The one-step method was first sug-

gested by Dyall [31] and has been studied by Liu and

Kutzelnigg [52], Iliaš and Saue [49], and Kedziera and

Barysz [44]. The method is based on the fact that Eq. 19

can be cast in the form

U
1

2mc2
S�1T

� �
Uþ UIORA

� ��1
Uþ U

1

2mc2
S�1V

� �
� I

¼ 0

ð27Þ

which corresponds to a non-symmetric algebraic Riccati

equation [61]:

UaUþ bUþ Ucþ d ¼ 0 ð28Þ

where a; b; c; and d are known matrices. Various algorithms

are known to determine the unknown matrix U in the Riccati

equation [61]. One way of solving it implies the transfor-

mation of the M-dimensional quadratic Eq. 28 into a 2M-

dimensional linear matrix equation [62], which corresponds

to the Dirac equation (1) in the current case. Solving Eq. 1 by

diagonalization provides all needed eigenvalues and eigen-

vectors. Then, the matrix U is directly calculated with the

help of Eq. 2. Subsequently, the relativistic matrices ~S and ~L
can be obtained from Eqs. 4 and 5.

In connection with the one-step method, it was pointed

out in [52] that for finite basis sets negative-energy (posi-

tronic) eigenvalues, significantly above the limit -2mc2,

might be obtained thus leading to an inverse variational

collapse (IVC). Accordingly, the total energy is no longer

reliable. We have found that this problem no longer occurs

when using the one-step method in connection with the

modified Dirac equation (1). Even for extremely steep basis

functions with exponents up to a magnitude of 1022 (nor-

mally not needed when working with a finite nucleus

model), IVC problems were not observed when applying

double numeric precision in the calculations. However,

when carrying out the same calculations with the program

DIRAC [63] which is based on the original Dirac equation,

IVC problems already occur for basis sets with modestly

steep basis functions (a & 1012, see application section).

There are indications in the literature [13, 64] that another

way of solving IVC problems is given by employing

quadruple rather than double precision in the calculations.

This solution, however, makes calculations expensive.

Iterative TU method From a computational point of

view, solution of Eqs. 5 and 6 represents a nonlinear

problem that can be solved with the use of a fixed-point

iteration [65]. Indeed, Eq. 6 can be written in the form of a

fixed-point problem U = F(U), which can be solved as

UðnÞ ¼ FðUðn�1ÞÞ ð29Þ

starting from a suitable guess U(0). This procedure con-

verges provided that the norm of the Jacobian matrix

JF = qF(U) / qU satisfies the inequality jjJFjj\1 at the

solution [65]. As is obvious from Eqs. 12 and 13, the latter

condition may not always be satisfied, which leads to the

lack of convergence of a fixed-point iteration for this

equation. This problem can be bypassed with the use of the

Newton-Raphson method (see above), which explicitly

uses the Jacobian matrix of the function F(U) [65].

Alternatively, a much simpler solution can be obtained

with the use of a damped fixed-point iteration technique

often employed to solve stiff initial value problems [66]. If

the direct fixed-point iteration of Eq. 29 does not converge,

one can introduce a certain amount of damping to stabilize

the iteration:

UðnÞ ¼ FðUðn�1ÞÞ � a FðUðn�1ÞÞ � Uðn�1Þ
� �

: ð30Þ

Even in the simplest form, with a fixed damping parameter

a, the use of a damped fixed-point iteration method leads to

convergence of the NESC equations (4) and (5). In view of

Eq. 11, the iterations are preferentially carried out for

matrix product TU rather than matrix U itself and after

convergence U is calculated with the help of the known T

(‘‘Iterative TU’’ method).

For the purpose of reducing the number of algebraic

operations during the iterations, it is convenient to rewrite

Eqs. 4, 5, and 6 as

~L ¼ Zþ Zy � ZyðT�1 � T�1WT�1ÞZþ V ð31Þ

Z ¼ S~S
�1 ~L� V ð32Þ
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~S ¼ Sþ 1

2mc2
ZyT�1Z ð33Þ

where Z = TU. Convergence is monitored by comparing

the absolute differences in the diagonal elements of the

NESC Hamiltonian (4) or (30) from successive iterations.

Comparison of methods to determine U. In view of the

stability problems mentioned by Liu and Kutzelnigg [52] in

connection with the one-step method, the Newton-Raphson

approach has some justification, especially if the number of

basis functions is small, e.g., when working with expo-

nential functions. However, once this problem is solved

there is no longer any reason to carry out the Newton-

Raphson method, which is no longer competitive compared

to the timings of the single-step method (see below and

Fig. 1). The disadvantage of the damping method has been

outlined above, and we do not recommend use of this

method. Instead, we suggest two alternatives: (i) In case of

single-energy calculations, the one-step method is prefer-

able as long as one can guarantee the accuracy of the

diagonalization. (ii) For repeated evaluations of the matrix

U as required in a geometry optimization [56] or a reaction

path calculation, it is more efficient to take an alternative

approach: The first calculation is carried out using the one-

step method. In all the subsequent calculations, the iterative

TU algorithm is used, because in this situation a reasonable

guess of matrix U is available from the previous calculation

thus guaranteeing a rapid convergence in just a few itera-

tion steps.

The TU method requires 5 matrix multiplications and

one inversion leading in total to 6M3 floating point oper-

ations (flops) per iteration. Solving the generalized

symmetric eigenvalue problem Ac ¼ Bck for matrices A

and B requires, in view of the dimension 2M, approxi-

mately 8 9 18/3 9 M3 = 48 M3 flops, i.e., the TU method

performs better if it converges in less than 8 iteration steps.

This assessment is supported by the geometry optimiza-

tions we have carried out so far. Application of the TU

algorithm reveals also that it is reliable for common basis

sets (e.g., the SARC basis sets of Neese et al. [67] or the

relativistic basis sets of Dyall [68, 69]), which do not

possess functions with an exponent[109. It is noteworthy

that as long as a finite nucleus model is used, steeper basis

functions are hardly needed.

Application to many-electron systems. NESC Eq. 3

provides the exact electronic solutions of the 4-component

one-electron problem. For the purpose of utilizing these

solutions and the pertinent Hamiltonian operator (4) for the

calculation of a many-electron system, one can employ the

one-electron approximation as suggested by Dyall [32, 70].

Within this approximation, the one-electron NESC Ham-

iltonian is renormalized on the non-relativistic metric [32,

70]

H1�e ¼ Gy~LG ð34Þ

so that H1-e can be applied in connection with the non-

relativistic Hartree-Fock or Kohn-Sham equations. Dyall

used Eq. 35 for the renormalization [32, 70],

G ¼ ~S
�1=2

S1=2 ð35Þ

which, however, suffers from an error due to inappropriate

treatment of the picture change (PC). A PC-corrected

renormalization was suggested by Liu and Peng [53],

G ¼ S�1=2 S1=2~S�1S1=2
� �1=2

S1=2: ð36Þ

The energy difference between the two renormalization

methods cannot be neglected except for one-electron

systems [53]. Note that the matrices for the uncontracted

basis set are used in Eqs. 35 and 36 [32, 70]. The total

electronic energy at the level of the independent-particle,

self-consistent-field approximation is then given by Eq. 37,

E ¼ trPH1�e þ
1

2
trPðJ�KÞ ð37Þ

where J and K are the Coulomb and the exchange parts of

the Fock matrix and P is the density matrix calculated as

P ¼ CnCy (C collects the eigenvectors of the Fock matrix

and n is the diagonal matrix of the orbital occupation

numbers). Within the one-electron approximation, the

potential energy of the electron-nuclear attraction is used

when calculating the V and W matrices in Eqs. 5, 6, 14,

and 8 [32].

As has been shown by Dyall [32, 70], the one-electron

approximation deviates from the exact FW-transformed

Fig. 1 Time savings achieved with the iterative TU method relative

to the Newton-Raphson method (blue points) and the one-step method

(black dots) in NESC/HF calculations for linear Hgn clusters with

increasing n and increasing number of basis functions. Positive values

indicate time savings obtained with the first method relative to the

second method. The dashed zero line is included to indicate when the

TU method becomes faster than the NR or one-step method (compare

with Table 2)
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relativistic equations by neglecting the renormalized two-

electron Darwin term, which originates from the commu-

tator of the electron–electron interaction operator and the

relativistic transformation operator. Within the one-elec-

tron approximation, the spin orbit interaction can be suit-

ably included utilizing the atomic mean field integrals

(AMFI) approach, which is commonly employed in con-

nection with the DKH method [71].

First-Diagonalize-then-Contract. It was tacitly assumed

so far that the NESC equations are solved in a sufficiently

large basis set of primitive functions. Indeed, using such a

basis set, one can reproduce the exact analytic solutions of

the Dirac equation for one electron with a sufficiently high

accuracy [31, 38, 70]. In the case of many-electron calcula-

tions, however, such an approach has the disadvantage that a

large number of two-electron integrals need to be evaluated,

which may lead to unacceptably high computational cost. It

is therefore desirable to employ contracted basis sets in

connection with the many-electron calculations. Dyall has

considered a contraction scheme, in which the relativistic

transformation (1) is folded into the contraction coefficients

[70]. This, however, leads to the necessity of developing

three sets of contracted basis functions [70] and to consid-

erable difficulties with devising segmented contraction of the

basis set [32]. For the purpose of bypassing these difficulties,

we employ the following strategy: The NESC one-electron

equations are solved in the basis set of the primitive basis

functions and the resulting renormalized one-electron

Hamiltonian (33) is converted to a contracted basis set. This

strategy has the advantage that only one set of contraction

coefficients is needed and that the use of both generally

contracted basis sets as well as basis sets with segmented

contraction becomes straightforward. Furthermore, using

this ‘‘First-Diagonalize-then-Contract’’ approach, the

atomic many-electron total energies obtained with a con-

tracted basis set are within less than 1 Hartree from the

energies obtained when employing the corresponding

uncontracted basis set. Therefore, we have used the ‘‘First-

Diagonalize-then-Contract’’ strategy throughout this work.

In this connection, it is useful to mention that the latter

strategy is in the same spirit as the computational approach

employed by the DKH method when transforming to

momentum space. The transformation is carried out in the

uncontracted basis set whereas the contraction coefficients

are applied to the final quasi-relativistic Hamiltonian [72].

3 Computational techniques

The algorithms described above have been programmed

within the COLOGNE2010 program package [73]. The

four-component Dirac–Hartree–Fock (4c-DHF) calcula-

tions, with RKB or UKB (unrestricted kinetic balance)

conditions to construct the small-component basis set, were

performed using the DIRAC program package [63]. For the

IOTC [42–44, 47] and relativistic elimination of small

component (RESC) [74] calculations, the GAMESS pro-

gram packages [75] were used. The Dirac, NESC, and all

other quasi-relativistic calculations for hydrogen-like ions

were carried out with a universal basis set of 50 primitive s-

type Gaussian functions taken from Wolf et al. [14] where

the exponents of the s-functions are defined by

ai ¼ exp �3:84þ i� 1ð Þ0:72½ �; i ¼ 1; 2; 3; . . .; 50. In order

to compare with the results published by Wolf et al. [14],

Reiher and Wolf [17], or Peng and Hirao [64], a previously

used value of c = 1/ a = 137.0359895 had to be used for

the calculations listed in Table 1. All other calculations

were carried out with the value of c given in Sect. 2 [59].

In connection with the NESC/HF calculations of Table 2,

the (22s15p11d6f) set of primitive basis functions of the

SARC basis library [67] was taken and contracted according

to Hg(1S) calculations at the HF level. For the NESC/finite

nucleus calculations [3, 76], the core functions were re-

contracted and two diffuse f-functions were deleted thus

obtaining a (22s15p11d4f)/[17s11p8d1f] basis set with the

pattern {61111111111111111/51111111111/41111111/4}.

Spherical basis functions were used throughout, which leads

to 150 primitive basis functions for each Hg atom.

In the case of the HgX calculations of Table 3, bond lengths

were obtained at the NESC/CCSD level of theory (F, Cl, Br, I:

2.024, 2.402, 2.546, 2.709 Å) utilizing a segmented contracted

basis set for Hg of the (22s19p12d9f) / [15s13p8d5f] type [77].

For F, Cl, and Br, Dyall’s Dirac-contracted cc-pVTZ(fi/sf/fw)

basis with the diffuse functions from the nonrelativistic aug-

cc-pVTZ basis was used [78]. A (22s15p11d6f) SARC basis

set was also taken for Tl and adjusted to finite nucleus cal-

culations in the same way as the corresponding Hg basis. The

Tl basis set was augmented with 3g2h1i polarization functions

[79]. An all-electron def2-QZVPP basis set [78] was used for

F, Cl, and Br in TlX. Again, the core functions were re-con-

tracted for the finite nucleus calculations as described above.

The relativistic def2-TZVPP basis set of I [67], also re-con-

tracted, was used for both HgI and TlI. The NESC/DFT cal-

culations were performed with the PBE0 functional [80, 81]

and NESC/PBE0 bond lengths of 2.096, 2.504, 2.642, and

2.842 Å (TlF to TlI).

4 Results and discussions

In Table 1, quasi-relativistic Hartree-Fock (HF) energies of

hydrogen-like multiply charged cations with atomic num-

bers Z = 20, 40, …, 120 are compared with exact 4c-DHF

(Dirac–HF) calculations. 4c-DHF atomic energies equiva-

lent to the basis set limit for the hydrogen-like cations can

be obtained from
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Eð1s1=2Þ ¼ mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Zað Þ2

q
� 1

� �
: ð38Þ

The finite basis set 4c-DHF energies are 0.01 up to 1

mHartree higher in energy for Z B 100 and almost 70

mhartree in the case of Z = 120. In Table 1, RKB [33, 34]

and UKB 4c-DHF energies [13] are listed where the RKB

(UKB) procedure has the purpose of avoiding a cata-

strophic variational collapse caused by an inappropriate

description of the small component and by this a serious

underestimation of the kinetic energy [82–84]. Usually,

UKB energies are higher than RKB energies; however, in

the case of the 1-electron systems exclusively described

with uncontracted s-functions for the large component, the

RKB approach and the UKB approach should lead to the

same energies. NESC reproduces the 4c-DHF atomic

energies in all cases, which confirms that NESC is an exact

quasi-relativistic method. When calculating the corre-

sponding RKB energies with the program DIRAC [63], we

ran into IVC problems, which vanished by eliminating the

10 steepest basis functions. Similar observations were

made using the matrix-driven IOTC/X2C [49] in DIRAC

[63] and the operator-driven IOTC methods [44] in GA-

MESS [75]. In Table 1, a comparison of the energies

obtained with 40 s-functions is also given. As expected, the

4c-DHF(UKB), 4c-DHF(RKB), NESC, IOTC/X2C, and

IOTC energies obtained differ by less than 10-6 Hartree,

underlining that the three quasi-relativistic methods lead to

exact energies.

It is well known that perturbational methods such as

DKH or RA, which do not provide an upper bound to the

correct DHF energy, approach the exact results in an

oscillatory manner, overestimating or underestimating

exact atomic energies. This is also reflected by the data in

Table 1. For Z B 60, DKHn atomic energies with n = 14

are close to exact values whereas for Z [ 60, one has to

apply DKHn with n [ 20. Infinite-order DKH theory cor-

rectly reproduces NESC and DHF energies in all cases.

Table 1 Ground state energies (in Hartree) of hydrogen-like ions obtained with different 4c-, 2c-, and 1c-relativistic methods

Method Z = 20 Z = 40 Z = 60 Z = 80 Z = 100 Z = 120

Point charge nuclear model with 50 s-functionsa

Dirac equation -201.076523 -817.807498 -1895.68236 -3532.19215 -5939.19538 -9710.78352

4c-DHF(RKB) [13] -201.07652 -817.80749 -1895.68234 -3532.19213 -5939.19514 -9710.71531

4c-DHF(UKB) [tw] -201.076522 -817.807491 -1895.68234 -3532.19213 -5939.19514 -9710.71531

NESC [tw] -201.076522 -817.807491 -1895.68234 -3532.19213 -5939.19514 -9710.71531

Other methods

RESCb -201.170853 -819.576517 -1904.19372 -3553.51917 -5954.76495 -9501.18126

ZORA [30] -202.158829 -836.011368 -1996.45087 -3898.86916 -7054.8079 -13096.9617

IORA [30] -201.082194 -818.171957 -1899.90000 -3536.90102 -6042.5850 -10089.4142

NESC-SORA [30] -201.076522 -817.807633 -1895.68972 -3532.31224 -5940.2749 -9718.0099

DKH2 [17] -201.072540 -817.615780 -1893.89769 -3523.32490 -5906.1919 -9594.1000

DKH3 [17] -201.076662 -817.820117 -1895.84407 -3533.11958 -5942.3695 -9712.9340

DKH14 [17] -201.076523 -817.807497 -1895.68235 -3532.19184 -5939.1821 -9710.2510

DKHn, (n [ 20) [64] -3532.19213

Point charge nuclear model with 40 s-functionsc

NESC [tw] -201.076522 -817.807490 -1895.68231 -3532.19120 -5939.16486 -9708.57973

4c-DHF(RKB) [tw] \1 9 10-8 \1 9 10-8 \1 9 10-8 4 9 10-8 5 9 10-8 6 9 10-8

4c-DHF(UKB) [tw] \1 9 10-8 \1 9 10-8 \1 9 10-8 \1 9 10-8 \1 9 10-8 \1 9 10-8

IOTC/X2C [tw] \1 9 10-8 \1 9 10-8 \1 9 10-8 3 9 10-8 5 9 10-8 6 9 10-8

IOTC [tw] 1 9 10-6 2 9 10-7 5 9 10-8 2 9 10-7 9 9 10-7 3 9 10-6

Finite nuclear model with 50 s-functionsd

4c-DHF(UKB) [tw] -201.076001 -817.788172 -1895.45071 -3530.19419 -5922.78995 -9545.87512

NESC [tw] -201.076001 -817.788172 -1895.45071 -3530.19419 -5922.78995 -9545.87512

a Because of inverse variational collapse, the 4c-DHF(RKB), IOTC/X2C, and IOTC values obtained this work [tw] are not listed
b For Z = 60–120, only the first 41 s-functions were used because of variational collapse
c Energy differences between NESC and other methods are given
d Mass number of isotope was taken from Ref. [76]. For Z = 120, mass number = 2.556*Z = 306.72. For Z = 119–137, there are a regular and an

irregular solutions. The potential energy matrix V is checked to distinguish between regular (finite) or irregular solution (infinite values of V).

See Ref. [95, p. 274]. The 4c-DHF(RKB) results are not shown because of inverse variational collapse.
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However, it becomes also obvious that convergence of the

DKHn energies to the correct result is rather slow.

Methods based on the RA converge much faster, how-

ever, largely overshoot exact results at the ZORA and

IORA level where the latter is slightly better because of the

infinite-order description in connection with the relativistic

normalization of the wave function. Dyall and Fægri have

provided arguments [3] that imply E(DHF) [ E(IORA) [
E(ZORA), which are confirmed by the energies of Table 1.

The development of a matrix formulation for the methods

based on RA by Filatov and Cremer have made it possible

to consider second- and third-order IORA methods [28]

and to connect the RA directly to NESC for example via

the NESC-SORA (second-order regular approximation)

method. NESC-SORA provides, not surprisingly, exact

results for small Z whereas for larger Z its energies again

overshoot exact DHF energies (Table 1).

The RESC method led to a variational collapse in the

case of Z [ 60. After eliminating the 9 steepest basis

functions, RESC energies could be obtained; however, a

comparison with other energy data was not possible. In all

cases where a comparison is possible, the RESC energies

obtained strongly overshoot exact energies.

It is well known that relativistic calculations benefit

from a model of the nucleus with a finite rather than a zero

radius (point charge model) [3, 76]. For example, the weak

singularity of the Dirac equation at the position of the

nucleus (point charge model) is avoided. The increase in

energy as described by the 4c-DHF method is correctly

reproduced by the NESC method (Table 1).

Table 2 Time savings obtained with the Iterative TU method relative to the Newton-Raphson method and the one-step method for NESC/HF

calculations of linear Hgn clusters

n M E (Hartree) Time savings Time savings

TU(I) versus NRa (%) TU(O) versus one-stepa (%)

1 150 -19618.6354121 0

2 300 -39237.2579430 0

3 450 -58855.8804389 31

4 600 -78474.5031191 46

5 750 -98093.1258063 55 -25

6 900 -117711.7485061 62 -7

7 1050 -137330.3711959 67 5

8 1200 -156948.9938766 70 12

14 2100 NESC part only 79 17

M number of basis functions. TU(I) and TU(O) denote that the initial guess for matrix U was obtained with the IORA (I) method and the one-step

(O) method, respectively. In the latter case, the situation of a geometry optimization was simulated by calculating matrix U at a Hg-Hg distance

0.1 Å shifted from the target distance for which the actual calculation was carried out. For the one-step method, 1-3% of the computer time of

the NR method was used. For n = 14, only the NESC part was calculated. All calculations were carried out using the Dyall renormalization of

Eq. 35
a A positive (negative) value denotes time savings (losses) of the first method relative to the second method. In the case of a small M, the

differences between TU(O) and one-step method were so small that a comparison was not useful

Table 3 Total energies and BDEs of HgX and TlX (X = F, Cl, Br, and I) molecules

Molecule State Method Absolute E (Eq. 35) Absolute E (Eq. 36) BDE BDH? SO Exp. BDH

HgF 2Rþ NESC-CCSD(T) -19726.5582307 -19720.0429423 33.0 32.3 32.9 [85]

HgCl 2Rþ NESC-CCSD(T) -20087.9428739 -20081.3538500 23.8 23.4 23.4 [86], 24.6 [87]

HgBr 2Rþ NESC-CCSD(T) -22231.8995139 -22224.4241374 20.0 17.5 17.2 [87], 18.4 [88]

HgI 2Rþ NESC-CCSD(T) -26740.7445756 -26732.4013087 12.9 7.6 7.8 [89], 8.1 [86], 8.9 [87]

TlF 1Rþ NESC-PBE0 -20355.7541876 -20348.8772434 117.0 102.4 105.4 [90]

TlCl 1Rþ NESC-PBE0 -20717.4160894 -20710.4986600 101.4 86.4 88.1 [90]

TlBr 1Rþ NESC-PBE0 -22862.2828606 -22855.0357093 93.1 76.1 78.8 [90]

TlI 1Rþ NESC-PBE0 -27372.1012052 -27363.2456874 83.1 61.2 63.7 [90]

Absolute energies E in Hartree, Bond Dissociation Energies (BDE), Bond Dissociation Enthalpies (BDH) ? Spin-Orbit(SO) coupling corrections

in kcal/mol; SO, ZPE, and thermochemical corrections of HgX and TlX were taken from Refs [90–92]. Experimental BDH (Exp. BDH) values

from [85–90]. The BDE values listed in this table were calculated using the renormalization Eq. 35. The BDE values determined with Eq. 36 and

including PC corrections are 0.2 (X = F, Cl, Br) or 0.1 (X = I) kcal/mol larger
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In summary, NESC is basically equivalent to the IOTC

and IOTC/X2C methods in so far as they all lead to exact

quasi-relativistic energies. Differences between these

methods exist with regard to the ways of handling the

calculation of U, the renormalization of the one-electron

hamiltonian, the contraction of basis functions, etc. NESC

is superior to methods based on (1) perturbation theory

either with or without infinite-order schemes or (2) sim-

plified ESC methods. NESC is exact and easier to apply

than many of the methods listed in Table 1 (see also the

following).

In Table 2, the performance of the Newton-Raphson

method, the iterative TU, and the one-step procedure are

compared for clusters of mercury atoms (Hg, 1S) linked

linearly to each other at a distance of 3Å between nearest

neighbors. For Hgn with n = 1, the basis set comprises 150

primitive basis functions whereas for the largest Hgn

cluster considered (n = 14) 2100 primitive basis functions

were used (in this case, only the NESC part was calcu-

lated). Comparison of computational cost was carried out at

the level of the uncontracted basis set in view of the

computational strategy ‘‘First-Diagonalize-then-Contract’’

adopted in this work, i.e., carry out the NESC calculations

for the uncontracted basis rather than the contracted one.

For the Newton-Raphson method, the simple linear itera-

tive scheme according to Eq. 26 was used because it turned

out to be the least costly and at the same time the most

stable one. All results obtained with the iterative TU

scheme were checked against the iterative Newton-Raph-

son scheme, and agreement in calculated energies was up

to 13 significant digits. In this set of calculations, we

started from a IORA guess for matrix U whereas in a

second set of TU calculations we simulated the situation of

a geometry optimization by utilizing, as a starting guess for

the TU algorithm at current geometry, the matrix U

obtained in a calculation where the mercury positions were

shifted by 0.1 Å.

Calculations revealed that, up to 300 primitive basis

functions, cpu times are comparable for the Newton-

Raphson and the iterative TU approach. For larger number

of primitive basis functions, time savings of the iterative

TU approach increase from about 30 % (450 primitives) to

80% (2100 primitives) (see Table 2; Fig. 1). These time

savings are, however, much larger if the TU method starts

from a better guess for the U matrix. In this situation, the

TU approach becomes competitive with the one-step

method. For large uncontracted basis sets, up to 17 % cpu

time could be saved compared to the timings of the one-

step method. In general, the one-step method requires only

1 to 3 % of the time required for the Newton-Raphson

method and therefore the time savings may be considered

as being rather small. In the situation of a reaction path

analysis, 103 and more energy (and gradient) calculations

are typically required, such that a time saving of just 10 s

for a single determination of U leads to a time reduction of

10,000 s and more and therefore should be exploited.

In Table 3, some NESC/CCSD(T) and NESC/DFT cal-

culations are summarized to illustrate the applicability of

the algorithm described in Sect. 2. In this paper, just the

bond dissociation energies (BDEs) of HgX and TlX (X = F,

Cl, Br, I) molecules are discussed. Geometries and vibra-

tional frequencies for the molecules of Table 3 have been

obtained at either the NESC/CCSD or NESC/PBE0 level of

theory using the same basis set as for the single point

calculations. Bond dissociation enthalpies (BDH) at 298

Kelvin, which can be directly compared with experimental

values [85–90], have been determined by correcting BDE

values for zero-point energies, thermochemical differences

between 0 and 298 Kelvin and spin-orbit (SO) coupling

contributions where the latter were calculated by using SO

pseudopotentials either via the state-interaction approach

perturbationally or via SO-CI variationally [90–92]. In this

connection, it has to be pointed out that SO-coupling cor-

rections may become unbalanced if the one- and two-

electron contributions are not both present [93].

BDH(298) values of HgX (2Rþ) molecules calculated at

the NESC/CCSD(T) level of theory differ from experi-

mental values on the average by 0.94 kcal/mol. If one

compares the individual values, then NESC/CCSD(T)

suggests for HgCl (2Rþ) a BDH value of 23.4 obtained by

Tellinghuisen et al. [86] rather than the older value of

24.6 kcal/mol [87]. Similarly, NESC/CCSD(T) supports

for HgBr the experimental value of 17.2 kcal/mol [87], and

for HgI the value of 7.8 kcal/mol [89].
The same level of agreement cannot be expected for

NESC/DFT although calculations have been carried out

with an all-electron SARC basis augmented by 3g2h1i

polarization functions. In view of a much smaller basis set

truncation error at the DFT level, the purpose of including

high angular momentum polarization functions was more a

question of testing the methods developed rather than a

question of chemical accuracy. The average deviation

calculated from experimental BDH values in the case of

TlX molecules is 2.9 kcal/mol where the largest deviation

is found for the TlF (1Rþ) (3.7 kcal/mol, Table 3). Apart

from this, there is a tendency of underestimating the TlX

bond strength by 2–3 kcal/mol, which probably has to do

with the deficiencies of the XC functional or inaccuracies

of the calculated SO couplings rather than errors of the

scalar relativistic effects. Thallium establishes strongly

polar bonds with electronegative atoms and accordingly the

bond strength should increase from the iodide to the fluo-

ride, which is confirmed by the BDH values. SO coupling

has a strong effect (15–22 kcal/mol, Table 3) on the bond

strength. The inclusion of g, h, and i polarization functions

leads, as expected, to only small changes in the BDE values
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(\0.1 kcal/mol). Apart from this, the results prove the

feasibility of using high angular momentum functions in

NESC calculations.

5 Conclusions

In this article, we have presented an improved version of the

NESC method: (i) Contrary to previous versions, the NESC

equations are solved for the uncontracted basis set and

contraction of the basis set is carried out afterward (‘‘First-

Diagonalize-then-Contract’’). Using the contracted basis

sets in many-electron atomic calculations, one obtains the

total electronic energies in close agreement with the energies

of the corresponding uncontracted basis sets. Also, generally

contracted basis sets as well as basis sets with segmented

contraction can be used in the calculations. (ii) Four different

strategies for calculating the matrix U are compared. In the

case of single-energy calculations, the one-step method is

most efficient whereas in repeated energy calculations as

required for geometry optimizations, the iterative TU algo-

rithm leads to significant time savings compared to the one-

step method. If the latter is carried out with sufficient accu-

racy and IVC problems are avoided as described in this work,

there is no longer any need for the Newton-Raphson

approach or the previously used damping method. (iii) The

picture change has been correctly accounted for the NESC

Hamiltonian. (iv) A finite nucleus model based on a Gaussian

charge distribution has been installed. (v) NESC exactly

reproduced in all cases investigated (hydrogen-like ions with

Z B 120) the 4c-DHF energies and represents therefore an

exact quasi-relativistic method. NESC is superior to

approximate quasi-relativistic methods whereas its time

requirements compare favorably with other exact quasi-rel-

ativistic methods such as the infinite-order DKH approach.

The implementation of the NESC algorithm presented in

this work makes it possible to carry out accurate quasi-rel-

ativistic calculations with HF, DFT, CASCF, CASPT2, CI,

many-body pertrubation theory utilizing the Møller-Plesset

perturbation operator, or coupled cluster methods. NESC is

generally applicable and can be included in standard quan-

tum chemical program packages. We have presented cal-

culations employing high angular momentum polarization

functions (including g, h, and i-basis sets) to provide evi-

dence that CBS limit energies can be obtained at NESC/

CCSD(T) or any suitable level of theory. In a forthcoming

paper [56], we will show that NESC can also be used for the

calculation of electric response properties (dipole moment,

polarizability, etc.) utilizing analytical energy derivatives.

The description of magnetic response properties will require

modifications of the original NESC formalism by including a

magnetic field into the elimination of the small component

operator [94].
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